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1. INTRODUCTION

Let X be an n x p data matrix representing n observations on p
variates. The deviation of the i-th unit can be evaluated computing

its Mahalanobis distance d;(n) (Dasgupta, 1993) from the centroid of
the n observations:

dim = /(x — Ay ) fx — am), M
for (i = 1,...,n), where x; is the vector corresponding to the i-

th statistical unit, fi(n) denotes the estimated centroid and ﬁ?(n) is
the sample covariance matrix. The symbol in round brackets denotes
the number of units used to compute the centroid and the covariance
matrix.

It is known that the presence of outliers can have misleading ef-
fects on the results of statistical analyses. In the classical approach,
observations with a Mahalanobis distance much greater than the others
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are declared as outliers. This method, however, involves serious draw-

backs especially when there are more than one outlier (Rousseeuw and
van Zomeren, 1990) because:

I. outliers do not necessarily have a high value of d;(n). As a
matter of fact, a cluster of outliers could attract the centroid and
consequently increase the value of the variances;

II. it is not always true that observations which present a large Maha-
lanobis distance are outliers. A cluster of atypical values, indeed,
could move the means from the center of the p dimensional cloud

where most observations lie, causing a large Mahalanobis distance
for these last observations.

These two phenomena are respectively known in the literature as
masking and swamping (Barnett and Lewis, 1994).

In order to overcome the drawbacks of the Mahalanobis distance
it has been suggested to use robust estimates of the means and of
the covariance matrix (Hampel ef al., 1986). In this paper we sug-
gest a “forward” procedure (Hadi, 1992; Atkinson, 1994) in which
very robust methods based on confidence bivariate contours are used
to select an outlier free subset of data. This subset is increased in
size using a search which avoids, in the first steps, the inclusion of
outliers. During the forward search we monitor particular Mahalanobis
distances. The output is presented through plots which are powerful
and easy to interpret. The effectiveness of the suggested method in
detecting masked multiple outliers and more generally in ordering the
data according to their degree of outlyingness is shown by means of
data sets widely used in the literature about multivariate outliers.

The program has been written in Gauss, version 3.2 and is avail-
able upon request.

2. STEPS OF THE PROCEDURE

In this section we give the details of our procedure. In the next

sections we will relate our suggestions to the methods currently used
in the literature.

The steps of the procedure are the following:

i) Definition of initial subset
We build the scatter plot matrix with respect to the p(p — 1)/2
couples of variables and in each scatter plot we represent a bivari-
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ate boxplot. We suggest two variants of bivariate boxplots. The
first is based on robust confidence ellipses and is similar to the
“relplot” suggested by Golberg and Iglewitz (1992). The second
uses the procedure suggested by Riani, Zani and Corbellini (1997)
which is based on convex hull peeling and B-spline smoothing
and produces outer contours which adapt to the differing spread
of the data in the different directions.

As a robust centroid, in this paper we use the bivariate median
which minimizes the L; norm in IR? (Small, 1990). Zani, Riani
and Corbellini (1998) discuss other choices of a robust centroid.
For each couple of variables we define as “bivariate clean data
set” the subset which contains the units inside a (1—«) confidence
contour. Usually outliers are a small part of the n units. Therefore
a reasonable choice, if the sample is large, might be to set 1 —a =
0.90. In small samples this level can conveniently be decreased in

order to compute the distances from a subset certainly free from
outliers.

For the total of the p variables we propose the following:

DEFINITION. We call the initial subset of multivariate clean ob-
servations the one formed by the intersection of the subsets of bivariate
clean data in each of the p(p — 1)/2 pairs of variables.

We will denote by m the number of the units belonging to the
initial subset. The observations not included in this initial subset of
multivariate clean units constitute the set of potential outliers.

Remark. The proposed definition does not guarantee that the initial
subset does not contain multivariate outliers. It may happen that an
atypical value can always fall near to the threshold of the ellipses
without ever lying outside. Undoubtedly this situation is unlikely to
happen, but in such cases this unit could be conveniently detected in
the second step of the procedure.

We note that the hypothesis of multivariate normality is not es-
sential: if the data do not follow the normal law, we cannot anymore
speak of (1 — &) confidence levels. Instead the units belonging to
the initial subset are those whose Mahalanobis distance from a robust
centroid does not exceed a prefixed threshold.
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i) Iterative inclusion of the units

(a) We calculate the Mahalanobis distances from the centroid for
each of the n units of the sample using as estimates fi(m)
and ﬁ(m), that is the vector of the means and the covariance
matrix calculated using the m units of the initial subset.

(b) Given a subset of dimension m > p we move to dimension
m+1 by selecting the m + 1 units which show the smallest
Mabhalanobis distances. Because n distances are calculated
and ordered for each move from m to m + 1, observations
can leave the subset used for computing the centroid and
the covariance matrix as well as joining it as m increases.
This enables us to detect atypical observations that never fall
outside of the bivariate confidence contours. However, we
note once again that this situation is very unlikely.

Steps (a) and (b) are repeated until m = n that is when we include
all the units in the subset.

If just one unit enters the subset at each move from m to m + 1
then the algorithm provides a new method for ordering multivariate
data according to their degree of outlyingness (Barnett, 1976; Zani,
Riani and Corbellini, 1997). As we will see in the next session,
multiple outliers or more generally observations which lie far from

the bulk of the data can be detected by inspection of simple plots
of a variety of statistics.

COMPARISON WITH EXISTING METHODS

In the three following subsections our method is related to the
existing procedures in the literature in terms of: definition of initial
subset, iterative inclusion of the units and outlier detection.

3.1. Definition of initial subset

Rousseeuw (1985) in order to find a robust centroid proposed
to search for the minimum volume ellipsoid which contains at least
half of the observations. However in order to select the minimum
volume ellipsoid we must compare ([n';Z]) subsamples. Therefore in
large samples (e.g. when n > 200), this method becomes burdensome
and computationally infeasible. Rousseeuw and Leroy (1987) in or-
der to overcome these drawbacks suggested an approximate procedure
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which is based on resampling techniques and on the calculation of
the determinants of the subsamples of size p 4+ 1. This method, how-
ever, assumes the hypothesis that every subsample has a full rank.
Rousseeuw and van Zomeren (1990), in the search for the minimum
volume ellipsoid, do not include those subsamples which have a nearly
singular covariance matrix. Our method, compared to this approach,
does .not suffer from these drawbacks and is computationally easier.

Our procedure allows us to start with a “clean data set” of several
observations, if the percentage of contamination is not high. This
provides computational savings and simplifications in the analysis of
potential outliers. Riani and Atkinson (1998) found convenient to
use this method for the analysis of multivariate transformations. In
fact, since it is the extreme observations which provide the evidence
of transformations, the initial subset found as the intersection of all
points lying within a robust contour containing a specified proportion
of the data provides a good start to the search for many values of the
transformation parameter. In addition, the size of the subset can easily
be decreased or increased by changing the level of the contour.

3.2. Iterative inclusion of the units

Atkinson (1994), in every step of the forward search, normal-
izes the squares of Mahalanobis distances using simulation techniques
treating differently the units which are inside the subset from those
outside. In Atkinson’s procedure the initial subset is chosen randomly.
Consequently, in this case is necessary to guarantee a certain degree
of exchangeability between the initial subset and the remaining group
of units. Our initial subset is free from outliers, therefore we do not
have this requirement. In our method in most moves from m to m 41
just one new unit joins the subset. This provides a natural order of
the data according to their degree of outlyingness. With this kind of
search the event in which in one step one unit leaves as two join is
extremely unusual. If this occours in the last steps of the forward
search these two units might belong to a cluster of outliers and are
likely to be highly influential.

3.3. Outlier detection

The asymptotic distribution of the Mahalanobis distances is 2
on p degrees of freedom. Hadi (1992) and Atkinson (1994) suggest
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outlier detection rules based on the x? r.v. However, even if it seems
that the results based on Mahalanobis distance remain qualitatively
unaltered when the initial distribution of the data belongs to the elliptic
family (Mitchell and Krzanowski, 1985), the rules defined above are
only asymptotically valid and must therefore be considered as simple
approximations. In addition, a “universal” threshold for declearing a
unit as outlier does not exist.

Wilks (1963), in order to detect isolated outliers suggested to use
the following ratio:

1Z( = DI/IE®). 2)
If the original data follow a p-variate normal distribution, the ratio
in equation (2) is distributed as a Beta r.v. If we suspect that r

units are outliers, an approximate test in order to appraise if these r
observations must be considered as atypical can be based on the ratio

1S(n - r)|/|Z(n)|. Between the ratio of these two determinants and

the Mahalanobis distance there is the following relation (see proof in
the Appendix):

|6y (0= 1) _( n—1 )” {1_ n_ (n)} «
1= ()| T \n-r-1 n—-12"
X [1 — (?n—:—;)zdizm)(n — 1)} X <0 X (3)

n—r+1,
X [1 - der(xl,m ,x,ﬂ)(n —r+ ])} ’

where dy,)(n — 1), for example, denotes the Mahalanobis distance
of observation x, with the centroid calculated excluding unit x;. The
greater the Mahalanobis distances of the » units considered as potential
outliers, the lower is the ratio considered in (3). The rejection area of
the null hypothesis of the absence of outliers, therefore, is in the left
tail of the distribution. The distribution of the ratio in equation (3)
becomes difficult to estimate because, as it is possible to see from the
results in the appendix, the Mahalanobis distance of unit i excluding
unit j is equal to a complicated expression. In addition, if the num-
ber of outliers is not known a priori, multiple deletions can become
computationally cumbersome. These are the reasons why the former
ratio has scarsely been used for multiple outlier detection.
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However, given that we start with a subset surely free from out-
liers, we can monitor the value of expression (3) in each step of the
forward procedure. A simple plot which reports on the x-axis the
size of the subset and on the y-axis the former ratio must present an
upward jump in correspondence of the inclusion of the first outlier.
More generally: the inspection of this plot enables us to monitor the
effect of the inclusion of each unit on the former ratio.

Other quantities which we found useful to monitor during the
forward search are:

1.
(£ (m))/ tr(E(n)) . (4

where symbol tr(ﬁ(m)) denotes the trace of the covariance matrix
based on a subset of m observations. An upward jump in this
plot points out that we have included an observation wich causes
a strong increase in the variance of the variables.

dim111(m) o)

where symbol dj,,+1) denotes the (m + 1)-th ordered Mahalanobis
distance. Usually this distance refers to the smallest among those
of the group of potential outliers. (This might not happen only
when more than one unit joins the subset at the same step). The
plot which reports on the y-axis this distance and on the x-axis the
number of units forming the subset should increase monotonously
and present a peak in correspondence to the step prior to the
inclusion of the first outlier. A subsequent decrease in the curve
is generally due to the masking effect.

dimy(m) . (©6)

Usually this distance refers to the largest Mahalanobis distance
among those of the subset. The plot of this quantity must present
a peak in correspondence of the inclusion of the first outlier.

dimy1y(m) — dipy(m) . , (N

This quantity must present a peak in correspondence to the step
prior to the inclusion of the first outlier.
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Fig. 1. 50% and 75% confidence ellipses of Mahalanobis distances from a robust centroid on standardized stack-loss data.
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Fig. 1. 50% and 75% confidence ellipses of Mahalanobis distances from a robust centroid on standardized stack-loss data.
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An outlier is likely to produce an increase in the variance of
the variables once it is included into the subset. In Mahalanobis
distance the deviation of the unit from the centroid is weighted
with the inverse of the covariance matrix, therefore the inclusion
of an outlier is likely to cause a sharp decrease in the quantities
reported in equation (8). Formula (8b) must be preferred to (8a)
because it does not consider in the computation of the mean the
distance associated to the unit just included (potential outlier).

In the next section we will refer to the seven plots associated with
equations (3)-(8) respectively with the words: ‘“determinant monitor-
ing”, “trace monitoring”, “minimum monitoring”, “maximum monitor-
ing”, “gap monitoring”, “average monitoring” and “trimmed average
monitoring”.

In order to have a complete picture of the Mahalanobis distances
in each step of the forward seach we can also produce a plot which
associates a curve to every unit. The curves referred to the outliers
(or more generally to the observations which lie far from the bulk of
the data) stand apart from the others. We will refer to this plot with
the words “distance monitoring”.

Finally, another way to monitor Mahalanobis distances can be
based on a plot which reports the values of the Mahalanobis distances
ranked in non decreasing order (“scree monitoring”). This plot must
present a sharp increase — an “elbow” — in correspondence to the
outliers.

4. EXAMPLES

We have applied our method to some data sets well known in the
literature concerning outliers, in which there are masking and swamp-
ing effects. They are known by the following names: Hawkins et
al. simulated data, Body and brain weight, Stack loss data. As con-
cerns Hawkins ef al. simulated data, our procedure like all those based
on the forward search enables to immediately detect the atypical cases.
The analysis of the body and brain weight data through the technique
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of the bivariate boxplot can be found in Zani, Riani and Corbellini
(1998). Here we simply concentrate on the stack loss data.

Stack loss data set (Chatterjee and Hadi, 1987, p. 228; Atkinson,
1985, p. 129), contains the values of 3 explanatory variables and one
dependent variable obtained from 21 days of operation of a plant for the
oxidation of ammonia to nitric acid. Similarly to Hadi (1992) we con-
centrate just on the 3 explanatory variables. This data set is peculiar,
because Mahalanobis distances calculated on all the observations would
not show any outlier. Hadi (1992) showed that observations 1, 2, 3
and 21 must be considered as multivariate outliers.

In this paper we use the simple version of bivariate boxplot based
on robust confidence ellipses because we want to show the power of
our method even in its simplest version. Figure 1 shows 50% and
75% confidence ellipses for each pair of variables and the boxplots
on the main diagonal. The 75% threshold leads us to initially exclude
from the initial subset units 1, 2, 3, 17, 21. If we want to start
with an initial subset of smaller dimension we simply must decrease
the outer threshold. For example, an initial subset of dimension 8
corresponds to a threshold of 55%. After finding this initial subset,
we iteratively increase it by one unit as described in section 2 up to
reach the end of the sample. Figure 2 shows statistics (3), (5), (6)
and (7). Panel (a) (determinant monitoring) shows a change in slope
passing from m = 17 to m = 18. Panel (b) and (d) (minimum and
gap monitoring) point out that the maximum in each of the two curves
is reached when m = 17. Finally, panel (¢) (maximum monitoring)
shows an upward jump passing from m = 17 to m = 18. Figure 3
shows statistics (8a) and (8b). Panel (a) (average monitoring) and even
more clearly panel (b) (trimmed average monitoring) show a downward
jump passing from m = 17 to m = 18. The joint examination of all
the plots seems to point out clearly that the units included for m > 17
cause a strong modification in the statistcs. Table 1 reports the units
included in the last 12 steps of the forward search. In fact, the units
included in the last 4 steps of the forward search refer to the 4 outliers.

TABLE 1: UNITS INCLUDED IN THE 12 STEPS OF THE FORWARD SEARCH.

Steps 9-10 10-11 11-12 12-13 13-14 14-15

Unit included 9 4 8 7 10 18
Steps 15-16 16-17 17-18 18-19 19-20  20-21

L Unit included 19 17 21 3 1 2
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Fig. 2. Determinant monitoring” (a), “minimum monitoring” (b), “maximum monitoring”

(c), “gap monitoring” (d).

The plots of figures 2 and 3 must be examined together with

figure 4 (distance monitoring plot) which reports the Mahalanobis dis-
tances referred to the all the 21 units in each step of the forward
search. This figure enables us to detect:

L.

IL.

the units whose Mahalanobis distance is far from the others. For
example, up to m = 16 it is evident that the curves referred to
units 2,1,3,21 and 17 stand apart from the others;

what are the units whose Mahalanobis distance decreases substan-
tially once they are included into the subset. For example this pic-
ture shows that Mahalanobis distance of unit 17 seems to decrease
monotonously from m = 11 to m = 17. Table 1 shows that this
unit is included when m = 17. In fact the “distance monitoring
plot” shows a big decrease in the curve referred to unit 17 pass-
ing from m = 16 to m = 17. This plot also shows that unit 17
is consistent with the others when m = 17 and is not a highly
influential observation because, as we have seen from the plots
of figures 2 and 3, its inclusion does not cause an appreciable
change in the statistics. However, unit 17 must be considered the
most remote after excluding the four outliers. More generally:
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the examination of the table which reports the order in which the

units are included enables to rank the observations according to
their degree of outlyingness;

II1. the presence of masking effect. For example, when m = 21 the
biggest Mahalanobis distance is referred to unit 17. Unit 3, which
in almost all the steps of the forward search shows a Mahalanobis
distance which stands apart from the others, when m = 21 has
only the 11-th Mahalanobis distance;

IV. eventual clusters of outliers. For example it is immediate to see
that the curves referred to units 1 and 2 (the last 2 units included)
are very close to each other in all the steps of the forward search.
This highlights that these two atypical units are similar. Figure 1
shows that these two observations always lie outside the 75%
ellipses and are very close to each other. In other words: there
is always a strong link between the order in which the units are
included and the characteristic of the original data. As noted by
Riani and Atkinson (1998), the forward search algorithm enables
to link the effect of each observation back to features of the

original data. In this way every perturbation can be traced to a
physical source.

5. CONCLUSIONS

In this paper we have suggested a simple iterative method for out-
lier detection. Our technique is based on a forward search algorithm
which orders the observations according to their degree of outlying-
ness. Our method of choice of the initial subset is easy to implement
and does not involve computational problems. Moreover, it is suc-
cesful in finding an initial subset which is not too small and at the
same time is free from atypical observations. This provides noticeable
computational savings when the sample size is large.

Results are displayed through simple graphs of a variety of statis-
tics monitored along the forward algorithm. These graphical displays
are both powerful in revealing the structure of the data and easy to
interpret. Influential observations can be related to patterns in the orig-
inal data. The application to a cornerstone data set in the literature of
atypical values (the stack loss data) has shown the advantages of our
procedure with respect to traditional backward methods.
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APPENDIX: RELATION BETWEEN MAHALANOBIS DISTANCE AND THE DETER-
MINANT OF COVARIANCE MATRIX

In this appendix we prove equation (3). The first step consists
in obtaining the relation between X)(n — 1) (the covariance matrix

excluding the k-th row of the data matrix), and f](n). After simple
algebra we obtain that:

n—1 n

Ban=1) = 200, —5 — o= gy b A Hx— A ©)

where
R 1 n X R ,
Lph—1) = Z (xi — py(n — 1)) (x;i — pbgy(n — 1)),
n—2.
i(£k)=1
oy —1) = (g, - - » Bpw) >
N 1 " )
Pjp=—— > xj,  j=12,...,p.
=1 icy=1

Calculating the determinant of both sides of equation (9) and recalling

the properties of this operator (e.g. Mardia et al.,1979; p. 457) shows
that:

n—1

A A p n

Ea -0l =180l (2=5) [1- Fpdo)] . a0
Going back iteratively excluding each time one additional unit we
end up with equation (3). The right hand side of equation (3) can
be modified by calculating the relation between the square of the
Mahalanobis distance of the j-th unit with the centroid calculated
excluding the k-th unit, using quantities based on the whole sample.

In order to find this last relation we have to apply the inverse

to both sides of equation (9). Using a standard inversion lemma
(e.g. Chatterjee and Hadi, 1987; p. 21) we obtain:

A 1 &, gn—2
E(k)(n — 1) = E(Vl) —t

n—1
— M0 . A
%.jl)Tnz(n)‘l(xk — Am)(x — A(n)) Z(n)~! (11)

(n — 12 —ndi(n)
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This result is comparable with that reported by Krzanowski (1988;
p. 213). Premultiplying equation (11) by (x; — 1)’ and postmultiplying
it by (x; — 1), after tedious but simple algebra we find that:
djgy(n—1) =

0= W+d@Ra— D +nd; @) +d;@e - D> —ndi@]  (12)
B @ —1)3—n@—Dd}n) ’

where dj (n — 1) is Mahalanobis distance of unit j, with centroid
calculated excluding unit &, and djzk(n) is a bilinear form which we
can interpret as an interaction term between the 2 units:

& () = (xj — L)) Em) ™ (xic — fun)) .

From equation (12) we can see that djz(k) (n—1) depends both on djz(n)

and d,f(n) (as we could expect), but also on the bilinear form djzk(n).
As a corollary of equation (12), putting j = k, that is calculating the
Mahalanobis distance of unit k after excluding it from the centroid,
we find the same result obtained by Atkinson and Mulira (1993):

n*(n — 2)d,§(n)
(n—13%—nn—Ddin)

digo(n —1) = (13)
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