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We introduce a powerful new robust diagnostic method 
for the analysis of data. In contrast to a "backward" method, 
which fits a model to all data and then deletes suspicious 
observations, we use a "forward" method, which starts from 
a small, robustly chosen subset of the data and monitors the 
effect of adding observations to the subset until finally all 
the data are fitted. We thereby avoid the masking effect of 
multiple outliers that can defeat backward methods. 

The method is clearly very general. In Section 8, we men- 
tion applications to linear and nonlinear regression, general- 
ized linear models, and multivariate analysis. Here we focus 
on transformation of the response in regression. 

Our forward search provides an ordering of the data from 
that most in agreement with the proposed transformation to 
that furthest from it. The ordering is then used to understand 
the contribution of each observation to the estimated trans- 
formation. Because observations that appear as outlying in 
untransformed data may not be outlying once the data have 
been transformed, and vice versa, we employ the forward 
search on data subject to various transformations, as well 
as on untransformed data. 

We emphasize exploratory methods so that cogent graph- 
ical summaries of our analyses are at a premium. In this way 
our approach derives from that of Tukey (1977). Like Cook 
and Weisberg (1994), however, many of the quantities we 
plot come from standard statistical analyses. For example, 
a typical output from our analysis is a plot of the score 
statistic for transformation as we increase the number of 
observations used in fitting the model. The plot, which we 
call a "fan" plot, enables us to see the influence of individual 
observations, not just outliers, on the evidence for a trans- 
formation. We can then link the effect of each observation 
back to plots of the data, information that often enriches 
our interpretation of scatterplots of the original or trans- 
formed data. Even if no outliers are present, our procedure 

provides an elegant graphical summary of the evidence for 
a transformation. 

We first consider univariate transformations and then 
multivariate ones. Section 1 briefly derives the score statis- 
tic for transformations. The forward search is defined in 
Section 2. We first discuss the inferential justification for 
the procedure and then consider in detail three aspects of the 
search-the starting point, the choice of the observations to 
be added, and the monitoring of important quantities dur- 
ing the search. The first example in Section 3 illustrates the 
null behavior of our procedure for the transformation of 
the response and shows how multiple masked outliers can 
indicate an incorrect transformation. The outliers are not 
revealed by single-deletion methods but are revealed by the 
forward search, which leads to the correct transformation. 
Sections 4 and 5 parallel Sections 1 and 2, describing the 
forward search for multivariate data using Mahalanobis dis- 
tances and the transformation of such data. We then give 
an example of the transformation of multivariate data and 
one of regression with a multivariate response. Comment 
and further discussion are in Section 8. 

1. TRANSFORMATIONS OF THE UNIVARIATE 
RESPONSE IN REGRESSION 

For the linear regression model E(y) = xTf3, with xp x 1, 
let n be the number of observations. Box and Cox (1964) 
analyzed the normalized power transformation 

z(A) { 
(YA - l)/AyA-1, A 0, 

( ylogy, A=0, (1) 

where the geometric mean of the observations is written as 
y = exp(E logyi/n). If the observations are normally dis- 
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tributed with R(A) the residual sum of squares of the z(A), 
the profile log-likelihood of the observations, maximized 
over 3 and a2, is 

Lmax(A) = -(n/2) log{R(A)/(n - p)} (2) 

so that A minimizes R(A). For inference about the transfor- 
mation parameter A, Box and Cox suggested the likelihood 
ratio test statistic 

TLR 2{Lmax(A)-Lmax(Ao)} 

= n[log{R(Ao)/R(>)}]. (3) 

A disadvantage of this likelihood ratio test is that a nu- 
merical maximization is required to find the value of A. 
For regression models, a computationally simpler alterna- 
tive test is the approximate score statistic derived by Taylor- 
series expansion of (1) as 

z(A) z(Ao) + (A - Ao)w(Ao), (4) 

where 

w(Xo)= oz(A) 
OA A=A0 

The combination of (4) and the regression model y = xTi3+ 
E yields the model 

z(Ao) = _ T -(-Ao)w(Xo) + 

=xT + wo) + . (5) 

Because (5) is again a regression model with an extra vari- 
able w(Ao) derived from the transformation, the new vari- 
able is called the constructed variable for the transforma- 
tion. The approximate score statistic for testing the trans- 
formation, Tp(Ao), is the t statistic for regression on w(Ao) 
in (5). This can be calculated either directly from the re- 
gression in (5) or from the formulas of Atkinson (1985, 
chap. 6) in which multiple regression on x is adjusted for 
the inclusion of the constructed variable. 

Similar ideas can be used for transformation of the ex- 
planatory variables (Box and Tidwell 1962). Constructed 
variables for the joint transformation of the response and of 
explanatory variables, together with score tests, were given 
by Atkinson (1985, sec. 8.4). Whatever the formal statisti- 
cal outcome of such procedures, the interpretability of the 
results is also of importance in finding a sensible transfor- 
mation. 

2. THE FORWARD SEARCH 

2.1 General Principles 
Like most methods for outlier detection, our method di- 

vides the data into two parts, a larger "clean" part used for 
parameter estimation and the outliers. The simplest division 
is into one potential outlier and the rest of the data, leading 
to single-deletion diagnostics. Standard books on regression 
diagnostics, such as those of Cook and Weisberg (1982), 
Atkinson (1985), and Chatterjee and Hadi (1988), include 
formulas for multiple-deletion diagnostics, in which a small 
number, perhaps two or three, of potential outliers are con- 
sidered at once. But there is a combinatorial explosion of 

the number of cases that have to be considered by such 
backward working. Here we employ very robust methods. 
In the resampling algorithms for least median of squares 
(LMS) regression (Rousseeuw 1984) and minimum volume 
ellipsoid estimation for multivariate data (Rousseeuw and 
van Zomeren 1990), the model is fitted to p observations, 
when the remaining n - p observations can be tested to see 
if any outliers are present. The resulting parameter esti- 
mates are very robust but are defined by the algorithm that 
produces them, a crucial distinction with standard statistical 
methods such as least squares. For example, LMS estimates 
could be found by searching over larger subsamples, per- 
haps with m = p + 1 or p + 2. The disadvantage is that the 
probability of subsamples with outliers increases. Woodruff 
and Rocke (1994) showed, however, that such estimators, 
while remaining very robust, have lower variance than those 
based on smaller subsets. They are therefore more reliable 
when used in outlier-detection procedures. 

In the forward search, such larger subsamples of outlier- 
free observations are found by starting from small subsets 
and moving to larger subsets containing observations that 
have small residuals and so are unlikely to be outliers. The 
method was introduced by Hadi (1992) for the detection 
of outliers from a fit using approximately half the obser- 
vations. Different versions of the method were described 
by Hadi and Simonoff (1993, 1994) and Atkinson (1994). 
This literature emphasizes the use of the forward search to 
find a single set of parameter estimates and outliers, deter- 
mined by the point at which the algorithm stops, which may 
be either deterministic or data dependent. The emphasis in 
our article is very different: At each stage of the forward 
search we use information such as parameter estimates and 
residual plots to guide us to a suitable model. 

We use least squares to estimate the parameters from the 
selected subset of m observations, with m running from p 
to n. From these parameter estimates, we calculate a set of 
n residuals em. There will then be n - m observations not 
used in fitting that may contain outliers. We do not seek to 
identify these outliers by a formal test but instead plot the 
residuals and the score statistic for transformations Tp(A), 
monitoring changes associated with the introduction of a 
particular observation into the subset m used for fitting. 
There are three particular consequences of this procedure: 

1. Stability. In the absence of outliers and systematic de- 
partures from the model, the parameter estimates for each 
m are unbiased estimators of the same quantity. So both 
parameter estimates and residuals should remain approxi- 
mately constant during the forward search. 

2. Ordering. If there are k outliers and we start from 
a clean subset, the forward procedure will include these 
outliers toward the end of the search, usually in the last 
k steps. Until then, residual plots and parameter estimates 
will remain approximately constant. Figure 4, Section 3, is 
such a plot of residuals. 

3. Transformations. Outliers in one transformed scale 
may not be outliers in another scale. If the data are ana- 
lyzed using the wrong transformation, the k outliers may 
enter the search well before the end. 
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The forward-search algorithm has three steps-the 
choice of an initial subset, the forward-search process, and 
the monitoring of statistics during the search. In the follow- 
ing subsections we consider these three aspects separately. 

2.2 Step 1: Choice of the Initial Subset 
If the model contains p parameters, our forward-search 

algorithm starts with the selection of a subset of p units. 
Observations in this subset are intended to be outlier free, 
but it is enough that they contain no masked outliers. Let 
Z = (X, y), where X is the n x p matrix of explana- 
tory variables so that Z is n x (p + 1). If n is moder- 
ate and p < n, the choice of initial subset can be per- 
formed by exhaustive enumeration of all (p) distinct p- 

tuples S1..i {zl,...', zip} where zT is the ilth row 
of Z for 1 < i1,... ,ip < n and ij y ij,. Specifically, let 
tT = [i, ... ip] and let ei s(p) be the least squares residual 

for unit i given observations in S(P). We take as our initial 
subset the p-tuple S(P), which satisfies 

(2 p) min[02 (6) 
[med,S(P) [med],S (6) 

where e2l is the Ith ordered squared residual among l1l,S?P) 
e2S, i = l,...,n, 

med [(n +p + 1)/2], (7) 

and [(n + p + 1)/2] denotes the integer value of (n + p + 
1)/2. If (n) is too large, we use instead some large number 
of samples-for example, 1,000. Criterion (6) provides an 
LMS method for regression models with independent errors 
(Rousseeuw 1984; Hawkins 1993). The breakdown point of 
this estimator is asymptotically 50%. 

2.3 Step 2: Adding Observations During the Forward 
Search 

Given a subset of dimension m > p, say S), the for- 
ward search moves to dimension m + 1 by selecting the 
m + 1 units with the smallest squared least squares residu- 
als, the units being chosen by ordering all squared residuals 

se i- l,...n. 
The forward-search estimator 3Fs is the collection of 

least squares estimators in each step of the forward search; 
that is, 

-/FS= (/p .. n) (8) 

with /3) the least squares estimator from subset Sm). 
In most moves from m to m + 1, just one new unit joins 

the subset. Two or more units may join Sm) as one or more 
leave, however, which sometimes happens at the beginning 
of a search, particularly with multivariate data, if the sub- 
set contains some unmasked outliers. Later in the search it 
occurs only when the search includes one unit that belongs 
to a cluster of outliers. At the next step, the remaining out- 
liers in the cluster seem less outlying, so several may be 
included at once. Of course, several other units then have 

to leave the subset. Step 2 of the forward search is repeated 
until all units are included in the subset. 

In this approach, we use a highly robust method and at 
the same time least squares (i.e., fully efficient) estimators. 
A consequence of the zero breakdown point of least squares 
estimators is that the introduction of atypical influential ob- 
servations is signaled by sharp changes in the curves that 
monitor parameter estimates or other statistics at every step. 
We can thus analyze the inferential effect of the atypical 
units on aspects of the fitted model. 

Initial Subset. The method is not sensitive to the method 
used to select an initial subset. For example, the LMS crite- 
rion (6) can be replaced by the least trimmed squares crite- 
rion in which the sum of the squares of the smallest half of 
the residuals, as defined by med in (7), is minimized. The 
search is often able to recover from a start that is not very 
robust due to the inclusion of unmasked outliers. A regres- 
sion example was given by Atkinson and Mulira (1993). In 
Section 4, we use bivariate boxplots to provide an initial 
subset for multivariate data from which the grossest out- 
liers are removed. The first few steps of the search are very 
active because potentially outlying observations are iden- 
tified and removed. But the final, informative, third of the 
forward search is insensitive to the precise selection of the 
initial subset. 

Residuals and the Search. Forward searches allowing 
for the variances of the residuals were employed by Hadi 
and Simonoff (1993) and by Atkinson (1994), who used 
studentized residuals, whereas we use raw residuals. Our 
comparisons show that, although the choice of residual has 
a slight effect on the forward search, particularly at the be- 
ginning, the search using raw residuals is more stable in that 
usually only one observation is added at a time rather than 
several being interchanged. For monitoring the effect of in- 
dividual observations on statistics and parameter estimates, 
it is helpful to connect particular effects with particular ob- 
servations. Both methods respond to a cluster of outliers 
with multiple exchanges. 

2.4 Step 3: Monitoring the Search 
The estimate of a2 does not remain constant during the 

forward search as observations that have small residuals are 
sequentially selected. Thus, even in the absence of outliers, 
the residual mean squared estimate s2 .m < s2 (n = s2 for 
m < n. One useful plot monitors all residuals at each step 
of the forward search. Large values of the residuals among 
cases not in the subset indicate the presence of outliers. Be- 
cause of the strong dependence of s2 on m, we standard- 
ize all residuals by the final root mean squared estimate s. 

3. EXAMPLES OF TRANSFORMATION 
OF THE RESPONSE 

We show results from a single forward search from a 
carefully selected starting point. The alternative of using 
several searches from random starting points seems to yield 
similar results but is more cumbersome. More important is 
whether the selection of the subset and the forward search 
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are carried out on untransformed data or on each individ- 
ual value of A. Individual searches give appreciably clearer 
plots and are preferable. 

We also have found that test statistics are more informa- 
tive than parameter estimates: If the likelihood is flat, the 
estimates can vary widely without conveying any useful in- 
formation about the transformation. 

3.1 Poison Data 
We begin with the poison data from Box and Cox (1964). 

The observations are time to death of animals in a 3 x 4 
factorial experiment with four observations at each factor 
combination. Box and Cox suggested the reciprocal trans- 
formation (A = -1) so that death rate, rather than survival 
time, has a simple structure. 

Our analysis is based on five values of A-1, -.5, 0, .5, 
and 1. In all examples these values are sufficient to indicate 
a satisfactory transformation. The data are transformed and 
a starting point is found by LMS for each of five forward 
searches, which then proceed independently for each A us- 
ing the transformed data. In this example we found the five 
initial subsets by searching 500 subsets for each A, although 
this detail does not affect our general results. Table 1 gives 
the last six observations to enter in each search, together 
with the ordering of the observations; observation 20 is the 
largest. 

For A = .5 and 1, the largest observations are the last 
to enter the subset used for fitting because they agree least 
with the model, whereas, for A = -1, all the large obser- 
vations enter earlier in the search than m = 43. If a correct 
transformation has been found, small and large observa- 
tions should both enter the search throughout, including at 
the end, as they do here for A = -.5. 

Figure 1 is the fan plot of the approximate score statistic 
Tp(A) for each search as the subset size m increases. The 
central horizontal bands on the figure are at ?2.58, contain- 
ing 99% of a standard normal distribution. For data without 
outliers, the curves for the different values of A fan out as 
they do here: If outliers are present, as they are in Figure 
3, Section 3.2, the curves may cross several times. But the 
final order always has A = -1 at the top and A = 1 at the 
bottom. Initially, in Figure 1, for small subset sizes there is 
no evidence against any transformation. During the whole 
forward search there is never any evidence against either 
A = -1 or A = -.5 (for all the data A = -.75). The log 
transformation is also acceptable until the last four obser- 
vations are included by the forward search. As the table 

Table 1. Poison Data: Last Six Observations to Enter the Five Separate 
Searches and Numbers of Six Largest Observations 

A 

Largest 
m -1 -.5 0 .5 1 observations 

43 27 44 14 43 28 13 
44 28 37 28 28 43 15 
45 37 28 37 14 17 17 
46 44 8 17 17 14 42 
47 11 20 20 42 42 14 
48 8 42 42 20 20 20 
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Figure 1. Poison Data: Fan Plot of Score Statistic for Power Transfor- 
mation Tp(Ao) as the Subset Size m Increases. The parameter values 
are A = 1, -- - --; A = .5, -- -- -- = - - - -;= .5, 
------; A =- 1, .......... Both A = -.5 and X = - 1 are acceptable. 

shows, these include some of the largest observations in 
order. The plot shows how evidence against the log trans- 
formation depends critically on this last 8% of the data. Ev- 
idence that A # 1 is spread throughout the data: Less than 
half of the observations are sufficient to indicate the need 
for some transformation. There are no jumps in this curve, 
just an increase in evidence against A = 1 as each observa- 
tion is introduced into the subset. The relative smoothness 
of the curves reflects the lack of outliers and exceptionally 
influential cases. 

3.2 Modified Poison Data: An Example of Masking 
We now modify the poison data to create four masked 

outliers that are not revealed by single-deletion diagnostics 
and that indicate an incorrect transformation. The outliers 
and their influential effect are revealed by our forward anal- 
ysis. 

Table 2 shows how the four masked outliers were created 
by making four small observations smaller. These modifi- 
cations should have little effect when the data are analyzed 
on the original scale but are very evident when A = -1 and 
so influence the transformation away from -1 toward 1. 

The maximum likelihood estimate A is .274 for an ad- 
ditive model without interactions. To explore the flatness 
of the likelihood surface and to indicate a confidence re- 
gion for A, five values of the approximate score test for the 
transformation are 

A -1 -.5 0 .5 1 
Tp(A) 22.08 10.01 2.87 -2.29 -8.41. 

All transformations are rejected at the 5% level, although 
neither the log nor the square-root transformation are 

Table 2. Modified Poison Data: The Four Modified Observations 

Observation Original Modified 

6 .29 .14 
9 .22 .O 

10 
11 

.21 

.18 
.07 
.06 
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Figure 2. Modified Poison Data: QQ Plots of Scaled Residuals at Three Stages of the Forward Search with A = 1/3: (a) m = 6, (b) m = 27- 
"Half" the Data Used in Fitting, (c) m = 48 - Least Squares Residuals From Fitting All the Data. 

strongly rejected. A value between them yields Tp(1/3) = 
-.59, making 1/3 acceptable. The largest effect of an ob- 
servation is from the deletion of observation 20; whether 
or not it is included, the data indicate the third root trans- 
formation, an unusual transformation, except for volumes. 
When A = .5, deletion of observations 20 or 42 makes the 
square-root transformation acceptable, taking the analysis 
even further from the value appropriate to the majority of 
the data. 

Figure 2 exhibits three quantile-quantile (QQ) plots of 
residuals for A = 1/3. Figure 2(a) shows scaled residuals 
from an LMS fit to an elemental set, found by searching 
over 10,000 randomly selected subsets of size m = 6, the 
number of parameters in the linear model. The plot shows 
the typically long-tailed distribution from a very robust fit, 
as does Figure 2(b), where m = 27; both plots might sug- 
gest either many outliers or none. The least squares fit to 
all the data, Figure 2(c), however indicates no particular 
outliers. Thus we would conclude from this analysis that 
the 1/3 transformation is reasonable on statistical grounds, 
although lacking a physical interpretation, and we have no 
indication of the effect of the four outliers. The example 
shows that, if data are analyzed on the wrong transforma- 
tion scale, even the application of very robust methods such 
as LMS fails to highlight outliers and influential observa- 
tions. 

In contrast, Figure 3 is the fan plot of the score statis- 
tics for transformation. Instead of a series of curves that 
either remain horizontal or steadily diverge, as in Figure 
1, some curves are within the bounds for most subsets and 
then increase rapidly at the end; others go outside the 1% 
boundary, only to return at the end. Both forms of behavior 
are associated with influential outliers. 

For A = -1, addition of the last four observations (the 
four outliers) causes a rapid increase in the value of the 
score statistic from 1.16 to 22.1, providing strong evidence 
against A = -1. The behavior of the curve for A = -.5 is 
similar but much less extreme: The four outliers are again 
included at the end. The curve for A = 0 first goes below 
the boundary but then rises above the upper threshold when 
the four contaminated observations are included, again in 
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the last four steps of the forward search. The statistic for 
A = .5 lies on or below the boundary when 22 < m < 37; 
the final value of Tp(.5) is -2.29. In this scale, the four 
contaminated observations are not extreme: Three enter at 
m = 38, 39, and 40 and cause the appreciable upward jump 
in the statistic. 

To confirm that A = -1, we look at the plot of standard- 
ized residuals during the forward search for this value of A. 
Figure 4 shows the four outliers, observations 6, 9, 10, and 
11, that enter in the last four steps of the forward search. 
Until this point, the pattern of residuals remains remark- 
ably constant, as Section 2.1 indicates. The pattern changes 
appreciably only in the last four or five steps, when the 
outliers and observation 8 are introduced. 

The results of the forward search in Figures 3 and 4 
clearly show the masked outliers and their effects, which 
were not revealed by single-case deletion methods nor by 
the residual plots for A = 1/3 of Figure 2. We believe this 
comparison exhibits the power of our method. For the rest 
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Figure 3. Modified Poison Data; Fan Plot of Score Statistic for 
Power Transformation Tp (Xo) as the Subset Size m Increases; Individual 
Searches for Each X. The parameter values are A = 1, -- - - - -; 
A = .5, -- -- -; = O,- - - -; = -.5, - - - - - -; = -1, 

........... The upward jumps result from the introduction of the masked 
outliers. 
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Figure 4. Modified Poison Data: Scaled Residuals During the For- 
ward Search With A = -1. The outliers are clearly visible and have 
constant residuals for most of the search. The changes in residuals in 
the last steps of the search are caused by the introduction of the outliers. 

of the article, we consider examples with original, unmod- 
ified data so that the outliers are not known. 

4. MULTIVARIATE OUTLIERS 
The extension of the forward search of Section 2 to mul- 

tivariate data replaces squared residuals with Mahalanobis 
distances based on residuals from the regression model, per- 
haps after transformation of the responses. For the complete 
data, let yT be the ith of n observations on a v-variate re- 
sponse with normally distributed errors and let [is(n). = Ai 
be the estimated response using all the observations. If there 
is no regression, 4,,s. ( = ys(n) = y, the vector of mean re- 

sponses. The squared Mahalanobis distance for observation 
i is 

di2 = (i - ( i) 
- = ei -lei, (9) 

where E = Es(n) is the sample covariance matrix, with 

i 

Yjk = (Yij -/lij)(Yik - Aik) / (n- p) 

= 
E eijeik/(n-p), (10) 

i 

and p is the dimension of the vector of regression parame- 
ters. Asymptotically the d2 follow a chi-squared distribution 
on v df. If i and E were not estimates but were known pop- 
ulation parameters, outlying values of yi would yield large 
values of the squared distance d2. The effect of such values 
on the estimation of A and E, however, leads to the rapid 
breakdown of the Mahalanobis distance for the detection 
of outliers, particularly if several outliers are present. 

Now suppose that a subset S(m) of m observations 
is used to estimate the regression and covariances. Let the 
estimates be i,ss(m) and ES(m), yielding the set of squared 
Mahalanobis distances 

di,S(r) 
= (Y i ~ i,Sm))TSm) (y - 

Ai,S(m)) (11) 

Our forward search uses (11) in place of the least squares 
residuals of Section 2. For multivariate data, we find a larger 

initial subset than that for regression by again transform- 
ing the data, followed by robust analysis of the matrix of 
bivariate scatterplots, using the procedure of Zani, Riani, 
and Corbellini (1998). The initial subset consists of those 
observations that are not outlying on any scatterplot, found 
as the intersection of all points lying within a robust con- 
tour containing a specified proportion of the data. The size 
of the subset can be adjusted by changing the level of the 
contour. Examples of the boxplots were given by Atkinson 
and Riani (1997). The initial steps of the resulting forward 
search sometimes involve the removal and introduction of 
several observations as multivariate outliers are identified 
that are not outlying in the marginal two-dimensional plots. 
We again perform the forward search once for each vec- 
tor A. 

5. MULTIVARIATE TRANSFORMATIONS 
TO NORMALITY 

The parametric family of power transformations was ex- 
tended to multivariate data by Andrews, Gnanadesikan, and 
Warner (1971) and by Gnanadesikan (1977). Given the dif- 
ficulty of visualizing multivariate data, diagnostic methods 
for multivariate transformations are even more important 
than those for univariate data; yet few have been devel- 
oped. Velilla (1993) compared marginal and joint transfor- 
mations and gave further references to related work. Velilla 
(1995) developed deletion diagnostics and robust estimates 
of the transformation parameter, exemplified on simulated 
data without regression structure. As in the univariate trans- 
formation of Section 1, we treat the general case in which 
the means of the observations may have a regression struc- 
ture. 

Let Yij be the ith observation on response j. In the ex- 
tension of the Box and Cox (1964) family to multivariate 
responses, the normalized transformation of yij is 

Zij(Aj) - 
(yiJ - 1)/Ajyj i (A # 0) 

= j log yij, (A = 0), (12) 

where yj is the geometric mean of the jth response. If 
the transformed observations are normally distributed with 
mean /i for the ith observation and covariance matrix E, 
twice the profile log-likelihood of the observations is given 
by 

2Lmax(A) = const-nlog E(A) 
n 

- 
E{i(A) 

- 
Ai (A) }T 

- 
(A) {Zi(A) 

- i (A) } 
i=l 

= const - n log IE(A) | 
n 

- ei (,)T-1 (,)ei (A). 
i=l 

(13) 

In (13), i (A) and E(A) are derived from least squares esti- 
mates for fixed A and ei(A) is the v x 1 vector of residuals. 

The calculation of /i(A) and C(A) is simplified when, as 
in the examples in this article, the matrix of explanatory 
variables X is the same for all responses. As a result, the 
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