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Abstract. The analysis of regression data is often improved by using a transfor-
mation of the response rather than the original response itself. However, finding a
suitable transformation can be strongly affected by the influence of a few individ-
ual observations. Outliers can have an enormous impact on the fitting of statistical
models and can be hard to detect due to masking and swamping. These difficulties
are enhanced in the case of models for dependent observations, since any anoma-
lies are with respect to the specific autocorrelation structure of the model. In this
paper we develop a forward search approach which is able to robustly estimate
the Box-Cox transformation parameter under a first-order spatial autoregression
model.

1 Introduction

The development of robust high-breakdown methods for spatially autocorre-
lated data is an important research topic. Models for such data are usually
fitted through maximum likelihood under a Gaussian assumption. It is no-
torious that maximum likelihood estimation is not robust to the presence
of outliers. Furthermore, spatial autocorrelation can be the reason for addi-
tional troubles in the outlier detection process, since any anomalies have to be
checked with respect to the assumed spatial model and neighbourhood struc-
ture. Cressie (1993) provides a wide description of exploratory tools that can
be applied to uncover spatial outliers and that make use of neighbourhood
information. However, these methods are based on case-deletion diagnostics
and are prone to masking and swamping with a cluster of spatial outliers.

Most high-breakdown methods for regression and multivariate estimation,
such as least median of squares regression and minimum volume ellipsoid es-
timation (Rousseeuw and van Zomeren (1990)), are difficult to extend to
autocorrelated observations, both conceptually and computationally. Ceri-
oli and Riani (2002) and Atkinson et al. (2004) suggest a forward search
approach to robustly fit spatial models. Their technique rests upon a compu-
tationally simple and statistically efficient forward algorithm, where at each
step observations are added to the fitted subset in such a way that outliers
and influential observations enter at the end.

In this paper we show how the forward search approach can be extended
to robustly improve normality of spatially autocorrelated data, a topic that
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has been somewhat neglected in the statistical literature (Griffith and Layne
(1995) and Pace et al. (2004) are two non-robust exceptions). Specifically, in
§2 we focus on the popular first-order Simultaneous Autoregressive (SAR)
model. Transformation of the response using the Box-Cox family of power
transformations is considered in §3, where we introduce the notion of a trans-
formed SAR model. §4 gives an overview of the forward search algorithm used
for fitting the transformed model. The usefulness of our method is shown in
§5 through a number of examples.

2 The Simultaneous Autoregressive (SAR) Model

Let S = {s1,..., s} be a collection of n spatial locations and y; be a random
variable observed at site s;, ¢ = 1,...,n. Spatial relationships between pairs
of locations are represented through the simple weighting scheme:

wi; =1 if sites s; and s; are neighbours,
wi; =0 otherwise,

and w;; = 0. For a regular grid the most common definition of a neighbour-
hood structure is that for which w;; = 1 if s; is immediately to the north,
south, east or west of s;. We write y = (y1,...,y,) and W = (w;;) for
i,7 =1,...,n. Edge points typically raise problems in the statistical analysis
of spatial systems. The basic difficulty is that they have fewer neighbours
than interior points. For this reason we assume that, whenever possible, W
has been suitably modified to account for edge effects. A simple but widely
adopted technique is toroidal correction, which wraps a rectangular region
onto a torus. Edge points on opposite borders are thus considered to be close,
and all sites have the same number of neighbours.

At each location we might have additional non-stochastic information
about p — 1 spatial covariates. Let X denote the corresponding design ma-
trix of dimension n x p, allowing also for the mean effect. The first-order
Simultaneous Autoregressive (SAR) model is defined as (Cressie, 1993)

(In = pW)(y — XPB) =&, (1)
where 8 = (S, ..., Bp—1)" is a p-dimensional parameter vector, I,, is the n xn
identity matrix, p is a measure of spatial interaction between neighbouring
sites, and € = (e1,...,&,) is an n-dimensional vector of disturbances. Errors

g; are defined to be independent and normally distributed with mean 0 and

common variance o2. It is assumed that (I,, — pW)~! exists. It is not essential

for W to be symmetric, although in practice this is often the case.
Estimation of parameters in (1) is by maximization of the likelihood

1(8,0%,p) = (2m0®)"/?|I,, — pW\exp{—ﬁ(y - XB)'2(y—XpB)} (2

where
Y=L, — pW) (I, — pW).
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3 The Transformed SAR Model

One crucial assumption underlying model (1) is normality of the additive
errors g;. If this requirement is not satisfied in the original scale of measure-
ment of the response, it may be that there is a nonlinear transformation of y
which will yield normality, at least approximately. In this paper we adopt the
popular class of nonlinear transformations suggested by Box and Cox (1964).
Let yu = (Yu1s- -5 Ysn) = (I — pW)y. Under the first-order SAR model
(1), y« has mean (I, —pW)X 3 and scalar covariance matrix. For this modified
data vector, the Box-Cox normalized power transformation to normality is

yr—1
z(\) = { T 270 (3)

Us logys A =0

where ¢, = exp(X; log y.;/n) is the geometric mean of y.1, .. ., Ys,. We define
the transformed SAR model to be a linear regression model with response
z(A), design matrix (I, — pW)X and Gaussian disturbance ¢, as in model
(1). That is,

Z()‘) = (In - pW)Xﬁ + €. (4)
When X = 1, there is no transformation in the standard SAR model; A = 1/2
is the square root transformation, A = 0 gives the log transformation and
A = —1 the reciprocal. These are the most widely used transformations in
practical applications.

Maximum likelihood estimation of A could be performed by suitable mod-
ification of equation (2). However, likelihood analysis for spatial Gaussian
processes can encounter numerical difficulties, such as convexity or multi-
modality of the resulting profile likelihood function (see Ripley (1988), §2.1),
and adding a further parameter to (2) might result in unpredicted conse-
quences. In addition, repeated evaluation of model (4) at subsequent steps of
the forward algorithm requires a fast computational procedure. For these rea-
sons, we do not resort to numerical maximization of the likelihood function
with respect to the extended parameter set (3,02, p, \). Following Atkinson
and Riani (2000, §4.2), instead we derive an approximate score statistic by
Taylor series expansion of (3) about a known value Ag. The score statistic
does not require computation of the maximum likelihood estimate of .

As a result, the transformed SAR model (4) is approximated as

2(Xo) = (In — pW)XB + yw(Xo) + ¢, (5)

where v = —()\ — )\0) and w()\o) = a,g(;) NN is known as a constructed

variable. The ¢ test for v = 0 in model (5) is then the approximate score
statistic for testing

HO A= )\0 (6)
in the transformed SAR model (4). This statistic makes proper allowance for
spatial autocorrelation in the process of finding the best transformation, thus
achieving the desirable goal of a joint spatial and transformation analysis.
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4 Robust Fitting of the Transformed SAR Model
and Diagnostic Monitoring

The transformed SAR model is repeatedly fitted through a block forward
search (BFS) algorithm similar to the one suggested by Cerioli and Riani
(2002). This algorithm is both efficient and robust. It is efficient because it
makes use of the Gaussian likelihood machinery underlying models (1) and
(4). Tt is robust because the outliers enter in the last steps of the procedure
and their effect on the parameter estimates is clearly depicted. More generally,
our approach allows evaluation of the inferential effect each location, either
outlying or not, exerts on the fitted model. The key features of the BFS for
finding the best transformation under model (4) are summarized as follows.
Choice of the initial subset. We take blocks of contiguous spatial locations
as the basic elemental sets of our algorithm. Blocks are intended to retain the
spatial dependence properties of the whole study region and are defined to
resemble as closely as possible the shape of that region. Confining attention
to subsets of neighbouring locations ensures that spatial relationships are pre-
served by the BFS algorithm, so that p can be consistently estimated within
each block. Atkinson et al. (2004) provide details about practical selection
of blocks and empirical evidence of the effects produced by different choices.
The initial subset for the BFS algorithm is then obtained without loss of
generality through a least median of squares criterion applied to blocks.
Progressing in the search. The transformed SAR model is repeatedly
fitted to subsets of observations of increasing sizes, selected in such a way
that outliers are included only at the end of the search. For this reason,
progression in the BFS algorithm is performed by looking at the smallest
squared standardized regression residuals from the fit at the preceding step.
At each step, model (4) can be fitted either by exact maximum likelihood
given the available data subset, or by a faster approximation to it. The weight
matrix W is usually corrected for edge effects for the reason sketched in §2.
Diagnostic monitoring. One major advantage of the forward search over
other high-breakdown techniques is that a number of diagnostic measures
can be computed and monitored as the algorithm progresses. Under model
(4), we are particularly interested in producing forward plots of regression
parameter estimates and transformation statistics. In the latter instance, we
produce forward plots of the approximate score statistic for testing (6) under
different values \g, using a separate search for each \y. These plots are then
combined into a single picture which is named a “fan plot” after Atkinson
and Riani (2000, p. 89). In most applications five values of Ag are sufficient
for selecting the appropriate transformation: 1, 0.5, 0, -0.5, -1, thus running
from no transformation to the reciprocal.
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Fig. 1. Fan plot for the clean dataset of Example 1.
5 Examples

5.1 Example 1: Clean Data

In our first example we analyze the behaviour of the BFS algorithm for
robustly fitting the transformed SAR model (4) in a dataset without outliers,
to check that it does not produce spurious information. We first simulate
n = 256 observations from model (1), with S a 16 x 16 regular grid, p = 0.1,
p =4, w;; = 1if s; is immediately to the north, south, east or west of s;, and
toroidal edge correction. Then we square the response values. The dataset is
available at http://www.riani.it/gfk12005. Any sensible transformation
analysis should point to the square root transformation of y, i.e. to A = 0.5.

Figure 1 is the fan plot showing the forward plots of the approximate score
statistic for testing hypothesis (6) under six values Ao, ranging from -1 to 2,
when the BFS is run with blocks of size 4 x 4 and toroidal edge correction.
The central horizontal bands are at £2.58, the 99% percentage points of the
reference asymptotic normal distribution. The fan plot clearly depicts the
correct transformation A = 0.5, as the corresponding score statistic varies
around zero along the search. Evidence against the other values of A increases
as the fitting subset grows. There is no effect of outlying observations at the
end of the search. We conclude that our method provides the appropriate
transformation, as well as the effect on the choice of A exerted by each spatial
location, in this “clean” example.

We complement our transformation analysis by seeing how the forward
plot of the maximum likelihood estimate of p changes under different values
of A. The corresponding plots are in Figure 2. Apart from the initial steps,
where results from the search may be unstable, it is seen that estimation of p
is not much affected by the specific transformation parameter. This indicates
lack of appreciable interaction between the strength of spatial autocorrelation
and the scale on which y is represented.
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Fig. 2. Example 1. Forward plots of the maximum likelihood estimate of p under
different transformations.
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Fig. 3. Fan plot for the contaminated dataset of Example 2.

5.2 Example 2: Contaminated Data

In our second example we evaluate the robustness properties of the BFS ap-
proach for transformation to normality with correlated data. For this purpose,
we introduce a cluster of 16 spatial outliers in the simulated dataset of Exam-
ple 1, by modifying the response values in the 4 x4 area in the left-hand corner
of S. Also this dataset is available at http://www.riani.it/gfk12005.
The outliers are masked and hard to detect by standard exploratory meth-
ods, such as visual inspection of the scatterplot matrix and diagnosis of the
regression residuals. On the contrary, Figure 3 is extremely clear in picturing
the influence that the outliers have on the selection of the transformation pa-
rameter. The true A = 0.5 is correctly supported by all the non-contaminated
data: the forward plot of the score statistic for testing A = 0.5 varies around
zero until the first spatial outlier is included in the fitted subset, at step
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Fig. 4. Example 2. Forward plots of the maximum likelihood estimate of p under
different transformations.

241. Even allowing for spatial autocorrelation, progressive inclusion of the
outliers renders the correct transformation increasingly less plausible. Non-
robust transformation analysis based on all the data would then wrongly
suggest that this dataset does not need to be transformed (A = 1). Further-
more, the outliers now have a disproportionate effect on estimation of p, again
irrespective of the value of A (Figure 4).

5.3 Example 3: Simulation Envelopes

In §3 we stressed the point that the approximate score statistic for testing (6)
in the transformed SAR model makes proper allowance for spatial autocor-
relation. However, it is not known how the asymptotic normal distribution
approximates the true null distribution of the score statistic in small or mod-
erate spatial samples. Therefore, it is useful to provide simulation evidence
of the finite sample accuracy of approximation (5) and of the effect of spatial
autocorrelation on the actual significance level of the score statistic.

Figure 5 reports 90%, 95% and 99% envelopes of the distribution of the
score statistic obtained from 200 independent simulations of the transformed
SAR model (4) under the null hypothesis, in the setting of Example 2 with p
estimated at the step before the inclusion of the first outlier. These envelopes
are compared with the corresponding percentage points of the normal dis-
tribution (the horizontal lines in the figure). After the first steps, it is seen
that there is good agreement between asymptotic and simulated percentage
points. This result strenghtens our confidence in pointwise inference based
on simple displays such as the fan plots of Figures 1 and 3 with spatially
autocorrelated data, at least when the sample size is moderately large and
the transformed SAR model fits well the data.

Some preliminary simulation results (not reported here) seem to show
that, for a fixed sample size, the accuracy of the normal approximation dete-
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Fig. 5. Simulation envelopes (dashed bands) and asymptotic percentage points
(solid lines) of the score statistic for testing A = Ao, in the setting of Example 2.

riorates as the model fit worsens. The development of a general approach for
calibrating asymptotic confidence bands of the score statistic under different
SAR model fits is currently under investigation.
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